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Abstract
Spin-polarized transport of relativistic electrons through graphene-based
ferromagnet/insulator/superconductor single and double junctions has been investigated on the
basis of the Dirac–Bogoliubov–de Gennes equation. We have presented a comparative study on
two kinds of cases: in the presence and in the absence of specular Andreev reflection. Although
both the magnetoresistance (MR) and conductance are oscillating functions of the effective
barrier potential and the thickness of the superconductive graphene (SG) layer for the two kinds
of cases, some differences in features have also been found. In the presence of specular
Andreev reflection, the MR decreases quickly with an increase of the thickness of the SG layer,
and negative MR can be observed, which is in contrast to the case for the absence of specular
Andreev reflection. It is interesting that the resonance peak of the MR can appear at a certain
bias voltage due to the retroreflection crossing over to specular Andreev reflection. This means
that the MR can be tuned by an external bias voltage, which benefits spin-polarized electron
devices based on graphene materials.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, there has been a great deal of interest in studying
the physical properties of graphene due to the successful
fabrication experiment by Novoselov et al [1]. Graphene is a
monolayer of carbon atoms densely packed in a honeycomb
lattice, which can be viewed as either an individual atomic
plane pulled out of bulk graphite or unrolled single-wall
carbon nanotubes. In graphene, the low energy bands can be
described by a two-dimensional Dirac equation centered on
the hexagonal corners (Dirac points) of the honeycomb lattice
Brillouin zone [2, 3]. The quasiparticle excitations around
the Dirac point obey linear Dirac-like energy dispersion. The
presence of such Dirac-like quasiparticles is expected to lead to
a number of unusual electronic properties in graphene [4–9].

Graphene is not a natural superconductor. However, very
recent research has shown that superconductivity can be in-
duced in a graphene layer in the presence of a superconducting

electrode by means of the proximity effect [10–12]. Graphene
which possesses superconductivity is called ‘superconductive
graphene (SG)’ [10–12]. Consequently, various investigations
on transport of electrons through graphene-based superconduc-
tor junctions have been undertaken [10–12]. The existence of
specular Andreev reflection in these structures has been pre-
dicted [10]. Such a specular Andreev reflection process leads
to qualitatively different tunneling properties compared with
those of the conventional superconductor junctions [11, 12].

In parallel with the above investigations, the ferromag-
netism of graphene has also been discussed. The ferromag-
netism and spin-polarized states of charge carriers can be in-
duced in the graphene layer by doping and defects [13–16] or
adding an external electric field [17] although the graphene
is not a natural ferromagnet. In fact, they can also be in-
duced by spin injection in the presence of a ferromagnetic
electrode, which is similar to the production of carbon-based
magnetism [18, 19]. The previous investigations have shown
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that spin injection is an efficient method for obtaining spin-
polarized states for some nonmagnetic metals and semicon-
ductors [20]. Similarly, we can put a graphene layer in
close proximity to a ferromagnetic insulator such as EuO. Via
the magnetic proximity effect, exchange splitting will be in-
duced in the graphene layer [19]. Recent experiments on
spin injection in single-layer graphene have extracted a spin
relaxation length between 1.5 and 2 μm at room tempera-
ture [18]. Graphene which possesses ferromagnetism is called
‘ferromagnetic graphene (FG)’ [21]. Monolayer FG also ex-
hibits some different properties in comparison with the con-
ventional ferromagnets, because they need be described by a
Dirac-like equation rather than the usual Schrödinger equa-
tion [13–17, 21].

It is natural to ask what kind of phenomenon will
occur when we combine FG with SG to construct a
graphene-based ferromagnet–superconductor junction. In the
past few years, the spin-polarized transport of electrons in
conventional ferromagnet–superconductor hybrid systems has
been investigated extensively and many interesting results
have been obtained [22–29]. Then comes a problem:
do the graphene-based ferromagnet–superconductor junctions
possess the same properties as the conventional ferromagnet–
superconductor junctions?

Considering these problems, in this paper we use the
Dirac–Bogoliubov–de Gennes (DBdG) equation to study spin-
polarized transport of relativistic electrons through graphene-
based ferromagnet/insulator/superconductor (FG/IG/SG) sin-
gle junctions and ferromagnet/insulator/superconductor/
insulator/ferromagnet (FG/IG/SG/IG/FG) double junctions.
Here, IG represents the local barrier, which can be imple-
mented by either using the electric field effect or local chemical
doping [1, 12]. The conductance and magnetoresistance (MR)
in these systems are discussed in detail.

2. A single FG/IG/SG junction

2.1. Theory and model

We first consider a FG/IG/SG junction in a monolayer
graphene sheet occupying the xy plane; the schematic potential
of the model for the relativistic spin-polarized electrons is
shown in figure 1. The growth direction is taken along
the x axis. The left FG and right SG are separated by a
barrier potential V0 with width d . Here we assume that the
FG electrode has exchange splitting, which is described by
h(x) = h0�(−x − d), where �(x) is the Heaviside step
function. The potential profile of the system is given by
V (x) = V0�(−x)�(x + d)− U0�(x). For the SG electrode,
neglecting the self-consistency of the superconducting pair
potential, �(x) is taken in the form �(x) = �0eiφθ(x),
where �0 and φ are the amplitude and phase of the induced
superconducting order parameter, respectively. We focus here
on the case where the width (along the y direction) of the
graphene strip, W , is much larger than d , that is to say d � W .
In this case the details of the microscopic description of the
strip edges becomes irrelevant. The charge carriers in the

Figure 1. A schematic representation of the energy bands and
potential profile in a FG/IG/SG junction. Top for spin up electrons;
bottom for spin down electrons. Note that we take the limit of the
thin barrier, namely, V0 → ∞ and d → 0, such that χ = V0d/vFh̄
remains finite.

present system can then be described by the following DBdG
equation [10]:

(
H0 − h(x)ρσ �(x)
�∗(x) −H0 + h(x)ρσ̄

)(
uaσ

vāσ̄

)
= E

(
uaσ

vāσ̄

)
,

(1)
where uaσ = ( ψAaσ , ψBaσ ) represents the two-dimensional
spinor of the electron in one valley a with spin σ and vāσ̄ =
(ψ∗

Aāσ̄ ,−ψ∗
Bāσ̄ ) is the two-dimensional spinor of the hole in

one valley ā with spin σ̄ , the index a denotes K or K ′ for
electrons or holes near K and K ′ points, ā takes values K ′(K )
for a = K (K ′), ρσ is 1 (−1) for up (down) spins, and the
Hamiltonian H0 is given by

H0 = −ih̄vF[σx∂x + sgn(a)σy∂y] + V (x)− EF, (2)

where vF denotes the Fermi velocity of the quasiparticles in
the graphene, EF represents the Fermi energy, and sgn(a) takes
values + (−) for a = K (K ′). In order to solve the transport
problem in the FG/IG/SG junction (sketched in figure 1), we
assume that the incident electron with spin σ and the reflected
hole with spin σ̄ propagate at angles of ασ and α′

σ̄ along x
axis. For a spin up electron incident on the junction from the
left FG electrode with an energy ε and transverse momentum
q , the wavefunctions in the three regions, taking into account
both Andreev and normal reflection processes, can be written
as [10–12]


1 = 
e+
Fσ + r
e−

Fσ + rA

h−
Fσ̄ , in the FG region


2 = p
e+
Iσ + q
e−

Iσ + m
h+
Iσ̄ + n
h−

Iσ̄ , in the IG region


3 = t
e+
S + t ′
h+

S in the SG region,
(3)

where r and rA are the amplitudes of normal and Andreev
reflections in the FG region, t and t ′ are the amplitudes of
electron-like quasiparticle and hole-like quasiparticle in the SG
region, respectively. p, q , m, and n are the amplitudes of spin
σ electrons and spin σ̄ holes in the IG region. 
e±

Fσ and 
h±
Fσ̄

represent the wavefunctions in the FG region traveling along
the ±x direction with a transverse momentum kyσ = q and
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energy ε for electrons and holes, respectively. They can be
expressed in the following form:


e±
Fσ = (1,±e±iασ , 0, 0)ei(±kσ x+qy)/

√
cos(ασ )


h±
Fσ̄ = (0, 0, 1,∓e±iα ′̄

σ )ei(±k ′̄
σ x+qy)/

√
cos(α′

σ̄ )

ασ = arcsin[h̄vFq/(ε + EF + ρσh0)],
α′
σ̄ = arcsin[h̄vFq/(ε − EF − ρσ̄h0)].

(4)

Here kσ = (ε + EF + ρσh0) × cos(ασ )/h̄vF and k ′
σ̄ =

(ε − EF − ρσ̄h0) × cos(α′
σ̄ )/h̄vF are the momenta along

the x axis. Note that a critical incident angle should
be considered in the scattering process; it is given by
αCσ = arcsin[|ε − EF − ρσ̄h0|/(ε + EF + ρσh0)]. When the
incident angle of the electron is larger than the critical incident
angle (|ασ | > αCσ ), there are no propagating AR solutions
and one should take α′

σ̄ = sgn(ασ )(
π
2 sgn(ε − EF − ρσ̄h0) −

iarccosh | sin ασ
sinαCσ

|). However, the evanescent AR solutions in the
calculations for such a case have to be included to ensure the
appropriate current conservation. 
e±

Iσ and 
h±
Iσ̄ represent the

wavefunctions in the IG region, which are given by


e±
Iσ = (1,±e±iθσ , 0, 0)ei(±kσ I x+qy)/

√
cos(ασ ),


h±
Iσ̄ = (0, 0, 1,∓e±iθ ′

σ̄ )ei(±k′
Iσ̄ x+qy)/

√
cos(α′

σ̄ ),

(5)

where θσ (θ ′
σ̄ ) is defined as θσ (θ ′

σ̄ ) = arcsin{h̄vFq/[ε +
(−)(EF + ρσ (ρσ̄ ) − V0)]} and kIσ (k ′

Iσ̄ ) = [ε −
(+)(EF + ρσ (ρσ̄ )− V0)]×cos[θσ (θ ′

σ̄ )]/h̄vF. In particular, we
define a thin barrier as one with V0 → ∞ and d → 0 such
that χ = V0d/vFh̄ remains finite. Note that in the limit of the
thin barrier, θσ , θ ′

σ̄ → 0 and kIσd, k ′
Iσ̄d → χ [11].

In equation (3) 
e±
S and 
h±

S represent the wavefunctions
of mixture DBdG quasiparticles in the SG region, which can
be expressed as


e±
S = (e−iβ ,∓e−i(β∓γ ), e−iφ,∓e−i(φ∓γ ))ei(±kS x+qy)∓κx,


h±
S = (eiβ,±ei(β∓γ ), e−iφ,±e−i(φ±γ ))ei(∓kS x+qy)∓κx ,

(6)

where the momentum kS along the x axis, the incidence
angle γ for the quasiparticles, the localization length κ , and
parameter β are defined by

kS =
√
(U0 + EF)2/(h̄vF)2 − q2,

γ = arcsin[h̄vFq/(EF + U0)],
κ = (U0 + EF)�0 sinβ/(h̄vF)

2kS,

β =
{

arccos(ε/�0) ε < �0,

−i arccosh(ε/�0) ε > �0.

(7)

Here U0 represents the electrostatic potential which may be
adjusted independently via a gate voltage or doping. Applying
the continuity of the wavefunctions at the boundaries,
ψ1(−d)|d→0 = ψ2(−d)|d→0 and 
2(0) = 
3(0), the
following transfer matrix is obtained:

⎛
⎜⎝

1 + r
eiασ − re−iασ

rA

rAe−iα ′̄
σ

⎞
⎟⎠ =

⎛
⎜⎝

e−iχ eiχ 0 0
e−iχ −eiχ 0 0

0 0 e−iχ eiχ

0 0 −e−iχ eiχ

⎞
⎟⎠

×
⎛
⎜⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 −1 1

⎞
⎟⎠

−1⎛
⎜⎝

e−iβ eiβ

−ei(γ−β) e−i(γ−β)
e−iφ e−iφ

−ei(γ−φ) e−i(γ+φ)

⎞
⎟⎠

(
t
t ′

)
.

(8)

Then the coefficients in equation (3) can be calculated. If
we take h0 = 0, that is to say, there is no ferromagnetism,
equation (8) gives the same results as [11].

After the transmission coefficients are obtained, the
tunneling conductance at zero temperature can be cal-
culated by means of the Blonder–Tinkham–Klapwijk for-
mula [10, 11, 30],

G(ev) = G0

∫ π/2

0
(1 − |r |2 + |rA|2) cos[ασ ] dασ , (9)

where G0 = 2e2 N(ev)/h is the ballistic conductance of
metallic graphene, ev is the bias voltage, and N(ev) =
(EF + ε)w/(π h̄vF) denotes the number of available channels
for the graphene sample with width w. Using equation (8)
and (9) the conductance for the single junction can be obtained
easily by numerical calculation.

2.2. Numerical results and discussion

Here we present the calculated results for Andreev reflection
coefficients and the tunneling conductance for the FG/IG/SG
junction. In general, it is very difficult to reach the regime
EF � �0 in experiments [10]. So, we only consider the
case of EF � �0 (case I) and the regime of comparable EF

and �0 (case II) in the following. For case I, only normal
Andreev reflection (retroreflection) plays a role in the process.
For case II, both normal Andreev reflection and specular
Andreev reflection play roles, that is to say, the retroreflection
crosses over to specular Andreev reflection [10]. The tunneling
coefficients through the FG/IG/SG junction as a function of
incident angle ασ for two kinds of cases are plotted in figure 2.

Figures 2(a) and (b) correspond to the cases of the normal
reflection and Andreev reflection for case I, respectively, while
figures 2(c) and (d) represent the corresponding cases for case
II. The solid line, dashed line and dash–dotted line describe
the results for unpolarized, spin up, and spin down electrons,
respectively. Here EF = 103�0 for case I and EF = �0 for
case II are taken. The other parameters used in the calculations
are eV/� = 0.5, U0/EF = 10, and χ = π/8. It is
seen from the figures that the different features appear for
the two kinds of cases. For case I with the limit of thin
barriers, there is not much difference between the three kinds
of curves, for unpolarized, spin up, and spin down electrons. In
contrast, separations for the three kinds of curves can be clearly
observed for case II even for small h0 (h0 = 0.2 in figures 2(c)
and (d)). This is because specular Andreev reflection
(the interband electron–hole conversion) [10] appears for
case II, which leads to the critical Andreev reflection angle

3
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Figure 2. Normal reflection R and Andreev reflection RA through a
single FG/IG/SG junction as a function of the incident angle for
unpolarized electrons (solid line), spin up electrons (dashed line) and
spin down electrons (dash–dotted line). EF = 103� for (a) and (b);
EF = � for (c) and (d). The other parameters are taken as
eV/� = 0.5, U0/EF = 10, χ = π/8 and h0/EF = 0.2.

αCσ (αCσ = arcsin[|ε − EF − ρσ̄h0|/(ε + EF + ρσh0)])
being very sensitive to the value of h0. In such a
process, the retroreflection crosses over to specular Andreev
reflection. However, for case I, specular Andreev reflection
is absent and the angle αCσ can be simplified to αCσ =
arcsin[|−EF − ρσ̄h0|/(EF + ρσh0)]. It is nearly independent
on h0 and almost reaches π/2 at eV/� = 0.5 due to the large
value of EF. This is why we cannot find the separations for the
three kinds of curves in figures 2(a) and (b).

These differences in the transmission coefficients lead
directly to differences in conductance. Figures 3(a) and (b)
show the differential conductance as a function of bias voltage
for two kinds of cases, respectively. For the case with h0 = 0,
our results are identical with those in [11]. When the spin-
polarized state is considered, separable conductances for spin
up and spin down electrons appear for case II, while there is
no difference between the conductance of spin up and spin
down electrons for case I. This can be seen more clearly from
figure 4.

Figures 4(a) and (b) display the tunneling conductance as a
function of the effective barrier potential χ at eV/� = 0.5 for
cases I and II, respectively. The solid line corresponds to the
case of spin up electrons and open circles to that of spin down
electrons. A large separation between the solid line and the
open circles is found in figure 4(b), while their superposition
is observed in figure 4(a) again. It is also clearly seen that all
cases exhibit oscillation behaviors, which are similar to those
of graphene-based metal–insulator–superconductor junctions
in the limit of a thin barrier. They arise from transmission
resonance (r = 0, |rA| = 1) for the condition β − 2χ = nπ
and n = 0,±1,±2, . . .. This is directly related to the Klein

Figure 3. Tunneling conductance of a FG/IG/SG junction as a
function of bias voltage for unpolarized electrons (solid line), spin up
electrons (dashed line) and spin down electrons (dash–dotted line).
(a) Corresponds to EF = 103� and (b) to EF = �. The other
parameters are identical to those of figure 2.

Figure 4. Tunneling conductance of a FG/IG/SG junction as a
function of the effective barrier potential χ for spin up electrons
(solid line) and spin down electrons (open circle). (a) Corresponds to
EF = � and (b) to EF = 103�. The other parameters are identical to
those in figure 2.

tunneling [9]. The conductance exhibits a π/2 or π oscillation
period at a fixed energy as a function of χ for U0 � EF

and U0 = 0, respectively. Here U0 = 10EF is taken. Thus,
the oscillation features in figure 4 lie between the case with
U0 � EF and that with U0 = 0.

The above results are only for the case of the FG/IG/SG
single junction. Some differences between case I and case II
have been found. In fact, such differences can be found more
remarkably in the FG/IG/SG/IG/FG double junctions.

3. A FG/IG/SG/IG/FG double junction

3.1. Theory and model

Now let us consider a FG/IG/SG/IG/FG double junction in
the graphene sheet occupying the xy plane, in which the left
and right electrodes are made of the same FG, and they are
separated from the central SG by two identical thin barriers as
shown in figure 5. The growth direction is also taken along
the x axis. The region IG, modeled by a barrier potential V0,
extends from x = −d to 0 and x = l to l + d , the FG region
occupies x < −d and x > l + d , while the superconducting
region occupies 0 < x < l. Here we assume that the
two FG electrodes have the same exchange splitting, which is
described by h(x) = h0[�(−x)±�(x − l)] where the plus
(minus) sign corresponds to the parallel (P) (antiparallel (AP))

4
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configuration of magnetizations. The potential profile V (x) in
the FG, IG and SG regions may be adjusted independently via
a gate voltage or doping; it is taken as

V (x) =

⎧⎪⎨
⎪⎩

−U0 0 < x < l

V0 −d < x < 0, l < x < l + d

0 x < 0, x > l + d .

(10)

The other parameters are taken the same to those in the
FG/IG/SG single junction and the charge carriers are also
described by equations (1) and (2). For a spin σ electron
incident on the junction from the left FG electrode with an
energy ε and transverse momentum q , the wavefunctions in
the five regions can then be written as


1 = 
e+
Fσ + r
e−

Fσ + rA

h−
Fσ̄ ,


2 = 
4 = p
e+
Iσ + q
e−

Iσ + m
h+
Iσ̄ + n
h−

Iσ̄ ,


3 = e
e+
S + f
e−

S + g
h+
S + h
h−

S ,


5 = t
e+
Fσ (σ̄ ) + t ′
h+

Fσ̄ (σ ),

(11)

where r and rA are the amplitudes of normal and Andreev
reflections, respectively; t and t ′ are the amplitudes of
spin σ (σ̄ ) electrons and spin σ̄ (σ ) holes for the P (AP)
configuration of magnetizations in the FG region; e, f , g and h
are the amplitudes of electron-like and hole-like quasiparticles
in the SG region; p, q , m, and n are the amplitudes of spin
σ electrons and spin σ̄ holes in the IG regions. All the
amplitudes in equation (11) can be determined through the
following boundary conditions:

ψ1(−d)|d→0 = ψ2(−d)|d→0, 
2(0) = 
3(0),


3(l) = 
4(l), ψ4(l + d)|d→0 = 
5(l + d)|d→0.

(12)
Then the transfer matrix for the present double junctions can
be obtained as⎛
⎜⎝

eikFσ L(1) + re−ikFσ L(1)

eikFσ L(1)+iασ − re−ikFσ L(1)−iασ

rAe−ik′
Fσ̄ L(1)

rAe−ik′
Fσ̄ L(1)−iα′

σ̄

⎞
⎟⎠

=
⎛
⎜⎝

e−iχ eiχ 0 0
e−iχ −eiχσ 0 0

0 0 e−iχ eiχ

0 0 −e−iχ eiχ

⎞
⎟⎠ S′

(x)

×
⎛
⎜⎝

eikFσ(σ̄ )L(4) 0
eikFσ(σ̄ )L(4)+iασ(σ̄ ) 0

0 eik′
Fσ̄ (σ)L(4)

0 −eik′
Fσ̄ (σ)L(4)+iα′

σ̄ (σ)

⎞
⎟⎠

(
t
t ′

)
, (13)

where

S′
(x) = S−1

(x=L(2))S(x=L(2))S
−1
(x=L(3))S

∗
(x=L(3)), (14)

S(x=L(2)) =⎛
⎜⎝

eikIσ L(2) e−ikIσ L(2) 0 0
eikIσ L(2)+iθσ −e−ikIσ L(2)−iθσ 0 0

0 0 eik′
Iσ̄ L(2) e−ik′

Iσ̄ L(2)

0 0 −eik′
Iσ̄ L(2)+iθ ′

σ̄ e−ik′
Iσ̄ L(2)−iθ ′

σ̄

⎞
⎟⎠ ,

(15)

Figure 5. The schematic representation of energy bands and the
potential profile in the P and AP alignments for a FG/IG/SG/IG/FG
double junction. Top for spin up electrons; bottom for spin down
electrons.

S∗
(x=L(2))

=
⎛
⎜⎝

Ae−iβ Be−iβ Ceiβ Deiβ

−Ae−i(β−γ ) Be−i(β+γ ) −Cei(β+γ ) Dei(β−γ )
Ae−iφ Be−iφ Ce−iφ De−iφ

−Aei(γ−φ) Be−i(γ+φ) −Cei(γ−φ) De−i(γ+φ)

⎞
⎟⎠ .

(16)

Here A = e(ikS−κ)L(2), B = e−(ikS−κ)L(2), C = e(ikS+κ)L(2) and
D = e−(ikS+κ)L(2). L(1), L(2), L(3) and L(4) are taken as 0, 0,
l and l, respectively. Adopting a the method similar to that used
to obtain S(x=L(2)) and S∗

(x=L(2)), we can get the expressions
for S(x=L(3)) and S∗

(x=L(3)). After transmission coefficients are
obtained by solving equation (16), the tunneling conductance
for the double junctions can be calculated using equation (9),
like in the case of the single junction. The tunneling
conductance is the sum of those of the two spin channels and
depends on the magnetization configuration of the two FG
electrodes. For the P configuration, GP = G↑↑ + G↓↓; while
for the AP configuration, GAP = G↑↓ + G↓↑. Then the MR,
MR = (GP − GAP)/GP, can be calculated easily.

3.2. Numerical results and discussion

An important difference for the FG/IG/SG/IG/FG double
junctions in comparison with the FG/IG/SG single junction
is that large oscillation MR can be found in the former. We
mainly focus on the discussion of such properties of double
junctions in the following. Like in the discussion of the
single junction, we consider two kinds of cases: case I for
EF � �0 and case II for EF = �0. The MRs of tunneling of
spin-polarized electrons through the FG/IG/SG/IG/FG double
junctions as a function of the thickness of SG for case I
and case II are plotted in figures 6(a) and (c), respectively.
Both of them exhibit oscillation features. In order to explain
such features, we also plot the corresponding tunneling
conductances (GP and GAP) for the two kinds of cases in
figures 6(b) and (d), respectively. Solid lines correspond to
GP and dashed lines to GAP. All of them oscillate with
the change of the SC layer due to the effects of interference
between electron-like and hole-like quasiparticles in the SC.
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Figure 6. Tunneling magnetoresistance (MR) ((a) and (c)) and conductance ((b) and (d)) as a function of the SG thickness (ks L). (a) and
(b) correspond to the case with EF = 103�, and (c) and (d) to that with EF = �. Solid lines in (b) and (d) represent the conductance of the P
configuration (GP) and dashed lines are for the AP configuration (GAP). The other parameters are identical to those of figure 2.

Figure 7. Tunneling magnetoresistance (MR) ((a) and (c)) and conductance ((b) and (d)) as a function of the effective barrier potential χ .
(a) and (b) correspond to the case with EF = 103�, and (c) and (d) to that with EF = �. Solid lines in (b) and (d) represent the conductance
of the P configuration (GP) and dashed lines are for the AP configuration (GAP). Here eV/� = 0.9 and kSl = 15. The other parameters are
identical to those in figure 2.

The oscillation periods for GP and GAP are nearly the same.
This leads to the oscillation of the MR with the same periods.

At the same time, we also find that their oscillation
amplitudes decay with increase of the thickness of the SG
layer due to the existence of the exponential decay term e±κl

in equation (13). However, the decay features for case I and
case II are different. The oscillation amplitudes of the MR and
conductance decrease quickly with increase of the thickness of
the SG layer for case II, while they decay slowly for case I.
This is because the parameter κ in the exponential term e±κl is
equal to (�/h̄v) sinβ in the U0 � EF limit. It is bigger for

EF = � (case II) than for EF = 103� (case I), which results
in quick decreases of the MR and conductance in case II.

The other difference between case I and case II is that
negative MR can appear in the latter, while MR always exhibits
positive values in the former. This can be understood from the
difference of conductances GP and GAP in figure 6(d). For
case II, the value of GAP can become larger than that of GP

for some cases with a certain ksL due to the retroreflection
crossing over to specular Andreev reflection, which makes the
MR become negative.
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Figure 8. Tunneling magnetoresistance (MR) as a function of bias
voltage for the case with EF = 103� (dashed line) and that with
EF = � (solid line). Here χ = 0.52π . The other parameters are
identical to those of figure 7.

The MR can be tuned not only via the middle SG layer, but
also by changing the effective barrier potential χ . Figures 7(a)
and (c) show the MR as a function of the effective barrier
potential χ for case I and case II, respectively, and the
corresponding conductances are given in figures 7(b) and (d).
All of them are oscillating functions of χ , and negative MR
is observed in case II again. The physical origin for such
a phenomenon can be understood as similar to that of the
above analysis as regards the single FG/IG/SG junction. The
oscillation periods are also determined by similar methods.

The MR not only oscillates with the change of the effective
barrier potential and the SG layer, but also can be changed
using external voltage for case II. The solid line in figure 8
represents such a case. Figure 8 displays the MR as a function
of bias voltage for case I (dashed line) and case II (solid
line). It is clearly seen that the large resonant peak appears
at a certain bias voltage for case II. Such a resonance is the
result of competition between the external voltage and the
retroreflection crossing over to specular Andreev reflection.
This means that the MR in case II can be tuned using the bias
voltage. This is in sharp contrast to the phenomenon in case
I where the MR stays nearly constant with change of the bias
voltage.

4. Summary

On the basis of the Dirac–Bogoliubov–de Gennes equation
and transfer matrix method, we have investigated the spin-
polarized transport of relativistic electrons through FG/IG/SG
single and double junctions. The conductance and MR in
these systems have been calculated. The comparative results
for two kinds of cases—in the presence or the absence of
specular Andreev reflection—have been presented. We have
found that separate conductance of spin-polarized electrons
and large MR can be obtained even at very small exchange
splitting. Although the MR and conductance are both
oscillating functions of the effective barrier potential and the
thickness of the SG layer for the two kinds of cases, some
different features have also been observed. In the presence
of specular Andreev reflection, the MR decreases quickly

with increase of the thickness of the SG layer and negative
MR can be obtained. This is in contrast to the case in the
absence of specular Andreev reflection, where the MR is
always positive and decreases slowly with change of the SG
layer. We have also found that the resonance peak of the
MR can appear at a certain bias voltage in the presence of
specular Andreev reflection; this is caused by the competition
between the external voltage and the retroreflection crossing
over to specular Andreev reflection. This means that the MR
can be tuned using the external bias voltage, which benefits
spin-polarized electron devices based on graphene materials.

All these predictions should be experimentally observable,
because the FG electrode, SG layer and local barrier can be
realized by using the methods proposed in [10–19]. However,
we have to point out that some effects, such as the spatial
variation of the pair potential in the SG due to proximity effects
and the spin flip of the charge carriers, have been neglected in
our theory. In addition, we limited our calculations by applying
the condition of zero temperature. Inclusion of the other effects
would be necessary for a complete theory, which merits further
study.
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[14] Vozmediano M A H, López-Sancho M P, Stauber T and
Guinea F 2005 Phys. Rev. B 72 155121

[15] Dugaev V K, Litvinov V I and Barnas J 2006 Phys. Rev. B
74 224438

[16] Oleg Yazyev V and Lothar H 2007 Phys. Rev. B 75 125408
[17] Son Y-W, Cohen M L and Louie S G 2006 Nature 444 347
[18] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van

Wees B J 2007 Nature 448 571
Makarova T and Palacio F (ed) 2005 Carbon-Based

Magnetism: An Overview of Metal Free Carbon-Based
Compounds and Materials (Amsterdam: Elsevier)

[19] Haugen H, Huertas-Hernando D and Brataas A 2007 Preprint
cond-mat 07073976

[20] Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[21] Bai C and Zhang X 2008 Phys. Lett. A 372 725

[22] de Jong M J M and Beenakker C W J 1995 Phys. Rev. Lett.
74 1657

[23] Upadhyay S K, Palanisami A, Louie R N and
Buhrman R A 1998 Phys. Rev. Lett. 81 3247

[24] Zhu J X, Friedman B and Ting C S 1999 Phys. Rev. B 59 9558
[25] Bozovic M and Radovic Z 2002 Phys. Rev. B 66 134524
[26] Yamashita T, Imamura H, Takahashi S and Maekawa S 2003

Phys. Rev. B 67 094515
[27] Dong Z C, Shen R, Zheng Z M, Xing D Y and Wang Z D 2003

Phys. Rev. B 67 134515
[28] Soulen R J et al 1998 Science 282 85
[29] Zutic I and Valls O T 1999 Phys. Rev. B 60 6320

Zutic I and Valls O T 2000 Phys. Rev. B 61 1555
[30] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B

25 4515

8

http://dx.doi.org/10.1103/PhysRevB.72.155121
http://dx.doi.org/10.1103/PhysRevB.74.224438
http://dx.doi.org/10.1103/PhysRevB.75.125408
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1038/nature06037
http://arxiv.org/abs/cond-mat 07073976
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1016/j.physleta.2007.08.050
http://dx.doi.org/10.1103/PhysRevLett.74.1657
http://dx.doi.org/10.1103/PhysRevLett.81.3247
http://dx.doi.org/10.1103/PhysRevB.59.9558
http://dx.doi.org/10.1103/PhysRevB.66.134524
http://dx.doi.org/10.1103/PhysRevB.67.094515
http://dx.doi.org/10.1103/PhysRevB.67.134515
http://dx.doi.org/10.1126/science.282.5386.85
http://dx.doi.org/10.1103/PhysRevB.60.6320
http://dx.doi.org/10.1103/PhysRevB.61.1555
http://dx.doi.org/10.1103/PhysRevB.25.4515

	1. Introduction
	2. A single FG/IG/SG junction
	2.1. Theory and model
	2.2. Numerical results and discussion

	3. A FG/IG/SG/IG/FG double junction
	3.1. Theory and model
	3.2. Numerical results and discussion

	4. Summary
	Acknowledgments
	References

